首页作文素材好词好句历史典故写作技巧考场素材单元作文英语作文小升初作文名人故事时事论据 名言警句范文大全精美散文
小学作文
初中作文
高中作文
作文体裁

探索下一代重型木结构科研建筑

时间:2023-07-20 23:55:02 来源:爱作文网  爱作文网手机站

查德·吉信

科研建筑市场的快速增长、科研建筑开发商的激烈竞争正在推动实验室空间和科研场所的需求升级,他们不断改进现有的科研空间,为租户创造与众不同的办公场所。在美国多地的商业地产市场中,对实验室和科研办公空间的需求一直十分旺盛,加剧了科研建筑开发商之间的竞争。2022 年第三季度,在美国最大的12 个商业地产市场中,开发中(包括新建和改造)的生命科学地产的建筑面积创纪录地达到了约3470,000m2(3740 万ft2)[1]。

与此同时,对可持续发展兴趣的升温让许多开发商开始寻找混凝土和钢结构的替代品,因为这两种材料的碳排放量都非常高。随着绿色建筑领域知识的普及和建筑规范的调整,建筑行业及相关客户逐渐将重型木结构视为未来的发展浪潮。美国木制品委员会在2019 年的一份报告中提到,美国已建成和规划中的木结构商业建筑接近600座,到2022 年9月,这个数字几乎翻了2倍,全美有1571 个采用重型木结构的项目处于施工或设计阶段[2]。显然,可持续建造和新的施工方式正在兴起和流行,甚至联邦政府也加入了这一浪潮:拜登政府宣布拨款3200 万美元支持木材行业的创新,其中就包括重型木结构[3]。

在科研建筑竞争加剧、重型木结构日渐流行的两个趋势叠加之下,我们的研究团队认识到了行业面临的挑战也看到了创新的机遇。如何优化实验室设计为租户创造独特的体验,增强产品的差异性,并提供一种以可持续、韧性和去碳化为核心的设计方案?我们认为答案是从内到外去设计一座建筑,而不是从外到内。我们与结构设计单位KPFF、机电设计单位Buro Happold合作,开展了一项由Gensler 研究所资助的、衡量实验室建筑影响的研究项目,对下一代科研建筑进行概念设计,探索科研建筑的性能、外观和人体感受。我们把这个项目称为“下一代”(NEXT)实验楼。

1-3 结构体系比较在建筑体验方面,重型木结构容易营造出温暖的感觉,而不同于混凝土或钢结构,需要用额外的室内装饰隐藏材料的冰冷感Comparison of structural systemsFrom an experiential point of view,mass timber produces a visually warm environment without having to add additional finishes to counter the cold feeling of concrete or steel

设计与研究团队

Gensler团队:Chad Yoshinobu,Hau Vong,Nathan Butt,Lucianna Scordo,Glen Berry,Justin Cratty,Erik Lustgarten,Anthony Brower

Buro Happold团队:John Swift,Richard Waldner,Justin Mole,Kristen Brozowski

KPFF团队:Brian Pavlovec,Jacob McCann,Shana Kelley

Research &Design Team

Gensler:Chad Yoshinobu,Hau Vong,Nathan Butt,Lucianna Scordo,Glen Berry,Justin Cratty,Erik Lustgarten,Anthony Brower

Buro Happold:John Swift,Richard Waldner,Justin Mole,Kristen Brozowski

KPFF:Brian Pavlovec,Jacob McCann,Shana Kelley

In a fast-growing market,the increased competition among science building developers is driving the demand for lab space and science workplaces,challenging the status quo to create differentiation for tenants.The demand for lab space and science workplaces remains strong in many markets,increasing competition among science building developers.Across 12 of the largest markets in the U.S.,a record 37.4 million square feet of life sciences space– both new construction and conversions– was under development in the third quarter of 2022[1].

At the same time,a surge of interest in sustainable development has many developers looking at alternatives to concrete and steel construction,both of which have a significantly high carbon output.As experience in the field grows quickly and building codes adapt,the construction industry and their clients are quickly looking to mass timber as the wave of the future.The Wood Products Council reported in 2019 that there were nearly 600 commercial timber buildings planned or built in the U.S.By September 2022,that number had nearly tripled,with 1571 mass timber projects either constructed or in the design phase[2].It is clear that sustainable construction and alternative construction methods are on the rise and will continue to grow in popularity.Even federal governments are joining the call,as evidenced by a $32 million appropriation announced by the Biden Administration to support innovations in the wood industry,including mass timber[3].

At the intersection of these two trends,our research team recognised the challenges facing the industry and saw an innovation opportunity.How could we optimise lab design,create a unique tenant experience,increase product differentiation in the marketplace,and offer a design solution that prioritises sustainability,resilience,and decarbonisation? The answer was to design the building from the inside-out,rather than the outside-in.In partnership with structural engineers KPFF and MEP engineers Buro Happold,we embarked on an ongoing measurable impact research project funded by the Gensler Research Institute to develop a conceptual framework for the next evolution of science buildings– both in terms of how they will perform,and what they will look and feel like.We call it the NEXT lab.

NEXT prioritises both construction efficiency and waste reduction,delivering a resilient building in a shorter speed-to-market time.Mass timber is particularly well suited to off-site construction,in which building components can be produced in a factory and delivered to the site as a kit of parts.These components can be assembled up to 30% faster than a conventional concrete lab building,and that accelerated schedule yields 10% in cost savings over a typical concrete building.In addition,mass timber buildings are lighter than concrete or steel buildings,so their foundations don"t have to be as extensive or expensive[4].

With up to 85% fewer deliveries to the site and up to a 75% reduction in construction waste,our calculations show that if we make the building out of sustainably sourced wood– a renewable resource– NEXT reduces the embodied carbon of the building by up to 80% compared to a conventional concrete lab building.That amounts to a saving of approximately 6,800 total metric tonnes of CO2,which is the equivalent of removing 1460 cars from city roads for an entire year.

Aesthetically,mass timber-framed buildings provide other benefits.They are naturally warm in comparison to concrete and steel structures,lending a pre-built finish to the interior.A concrete building would require additional design elements,typically specialty materials,to warm the aesthetics of the space.Applying those additional elements would add material and labour costs and more time to the schedule.

To conceptualise a building that would respond to real world conditions and provide a basis for our energy modelling and analysis,we needed to work with a specific site.We began by researching possible locations in the U.S.that could support the implementation of the project.For guidance,we looked at mass timber resource availability and manufacturer proximity,local codes and standards,the existing network of life science hubs and mass timber project precedents.

4.5 项目场地研究团队将场地选在了西雅图的上城区,这里非常适宜步行,也是生命科学产业聚集地和本地的文化艺术中心Building siteThe team selected a site in Seattle"s walkable Uptown District,a hub for life sciences and a local center for arts and culture.

6.7 向西南方向看项目 View looking southwest

8 东立面木桁架解决了水平方向的结构要求,也为租户增添了视觉趣味 East fa?adeCross-bracing addresses the requirements for structural lateral bracing as well as adding visual interest for tenants

“下一代”实验楼的首要任务是提升施工效率和减少浪费,在更短的时间内建成具有韧性的建筑。重型木结构特别适合场外施工,即在工厂生产建筑构件后打包运送到施工现场。组装这些构件相比传统现浇混凝土能够提速30%,从而缩短工期节省10%的成本。此外,采用重型木结构的建筑比混凝土或钢结构建筑更轻,因此所需地基也更浅、更经济[4]。

我们的计算表明,如果使用可持续来源的木材(属于可再生资源)来建造,则运输到现场的建材可以减少85%,建筑垃圾可以减少75%。“下一代”实验楼由于采用重型木结构,隐含碳排放比传统混凝土建筑减少了80%,相当于一座大楼可以减少约6800t 的CO2排放,这相当于1460 辆汽车在城市道路上一整年的排放量。

重型木结构建筑在美学方面也具有优势。与混凝土和钢结构相比,重型木结构天然地给人温暖的感觉,并且为室内装修提供了预制的木饰面。混凝土建筑往往需要额外的室内装饰,通常是采用一些特制的材料才能营造出空间的美感。这些额外的装修会增加材料和人工成本并延长施工时间。

为了设计出一座能够应对现实条件的重型木结构建筑并用于能源建模与分析,需要选择一个具体的场地。我们首先研究了美国范围内可行的地点,研究要素包括场地的重型木结构资源可得性、场地与制造商的距离、当地法规和建筑规范,我们也研究了现有的生命科学产业网络以及大量重型木结构项目的案例。

我们通过调查制造商的分布来确定在美国哪些地区最容易获得重型木结构产品。易于理解的是,制造商通常靠近允许采伐的森林。每个地区可用的树种也不同——从美国西北地区的北美黄杉到东南部的美国南方松。令人欣喜的是,我们发现全美范围内重型木结构制造商的数量在不断增长。

对于这项研究,我们最终选择了华盛顿州西雅图市的一个城市地段作为场地。此前,我们的科学小组探索了许多不同城市的地点和街区,最终选择的场地具有丰富的可能性,它位于西雅图市中心(标志性的太空针塔所在处)和联合湖南区(亚马逊总部所在地)之间。

这两个地标之间的上城区是西雅图非常适合步行的街区。这个新兴街区不仅有空地可开发,而且已经有流行文化博物馆和比尔及梅琳达·盖茨基金会等重要景点,还有太平洋科学中心、奇胡利花园和玻璃艺术馆,以及太平洋西北芭蕾舞团的所在地马里恩奥利弗麦考剧院。此外,生命科学产业在该地区的发展中占据重要地位,这也是我们把项目场地选在这里的一个重要原因。

除了考虑材料、运营成本、环境健康和市场需求等因素外,我们还希望将面向未来的生命科学建筑视为一个新的设计问题去解决。我们首先重新审视了大多数传统科研建筑采用的长方形盒子结构,这种建筑大多数使用中央核心筒布局,位于楼层中央的电梯间将租户空间分隔开,限制了租户的视觉和物理联系。在我们的项目中,将核心筒从建筑的中心移到边缘,这解决了西面的视野被相邻建筑阻挡的问题。核心筒移动后还释放了租户空间的进深,使租户可以最大限度地灵活规划室内布局。

此后,我们批判性地审视了核心筒本身。我们认为核心筒内的消防楼梯是建筑物中最未充分利用的资产。我们开始考虑如何让楼梯成为租户可以使用的一项设施,而不仅仅是为了满足消防规范。于是,我们将核心筒改到临街道的一侧,紧靠玻璃幕墙立面,从而使楼梯间能享受到阳光和景观。这个做法为整个建筑创造了一项新资产——楼梯成为一种有利健康的设施,为员工们提供了一个比乘坐电梯更健康的交通方式。如果租户租用了两层以上的楼层,他们就不再需要自己修建楼梯,而是可以刷电子门禁卡来使用消防楼梯。这大大地降低了成本和装修时间。

9 主要设计概念项目的设计概念由几个主要步骤生成:首先,我们决定将核心筒放置在建筑边缘,以尽可能增大租赁空间的进深;
其次,将核心筒放在靠街道的外侧,以创造一个可以看到街景的楼梯间;
我们选用了约10m×10m(33ft×33ft)的柱网,可以为实验室的布局提供更大的灵活性;
接下来,我们确保每层楼和屋顶都有室外活动空间,首层则有一系列公共功能可以成为社区的催化剂Key design conceptsConceptually,the design is based on a handful of strategic steps.First,the core was shifted to the perimeter to maximize the interior lease depth.Then the core was placed along the street edge to create an interconnecting stair with views to the adjacent pedestrian street.The structure was designed with a 33 ft×33 ft grid that allows greater flexibility for lab layouts.Each floor and the rooftop enjoy access to outdoor space.And the ground floor was programmed to serve as a community catalyst

10 东立面玻璃幕墙立面的一部分是可以调节的,从而使建筑在1/3的工作时间内都可以进行自然通风East fa?ade Operable panels in the fa?ade allow for the building to be naturally ventilated one-third of the work hours

11 东立面East fa?ade

12 北立面开放互通的楼梯间(图中右侧)有助于健康、协作工作氛围的形成North fa?adeThe interconnecting stair (at right in image) encourages a healthy workplace and promotes collaboration

Our examination of manufacturers,for example,helped us identify the regions in the country where mass timber products are most readily available.Understandably,manufacturers are usually near the forests from which the timber is harvested.Each region has different availability of tree species,as well– from Douglas fir in the northwest region to Southern yellow pine in the southeast.We also found the number of manufacturers is growing around the country,which is encouraging.

For this specific research project,we selected an urban site in Seattle,Washington.Our science group explored alternative locations in many different cities– and many different districts within those cities– before we selected Seattle.The site we ultimately selected is rich with possibilities,located between the Seattle Center,which is easily recognised by the iconic Space Needle,and the larger South Lake Union district,the location of Amazon"s headquarters.

Between those two landmarks is Seattle"s walkable Uptown District.This emerging neighbourhood not only has developable lots,but is already populated with important sites such as the Museum of Pop Culture and the Bill and Melinda Gates Foundation.It also boasts the Pacific Science Center,the Chihuly Garden and Glass Museum,and Marion Oliver McCaw Hall,home to the Pacific Northwest Ballet.In addition,the life sciences industry is a big player in the growth of this district,a factor that heavily influenced our decision to pick this specific site for our project.

In addition to considering factors such as materiality,operating costs,health and wellness,and market demands,we wanted to treat the future-forward life sciences building as a design problem as well.We started by re-examining the rectangular box that is the standard for most conventional science buildings.The majority of these are centre-core buildings,in which the elevator core bifurcates the tenant space,limiting visual and physical connectivity for tenants.For our project,we decided to relocate the core from the centre to the perimeter of the building,which addressed the fact that views to the west were limited by an adjacent building.Furthermore,moving the core also liberated the lease depth for the tenant spaces,allowing tenants maximum flexibility to plan the interior layout.

Then we looked critically at the core itself.We determined that a fire stair embedded within the core is the most underutilised asset for a building.We began to consider how to make the stairway a tenant amenity,as opposed to being solely a fire code requirement.That prompted us to shift the core to the street front,thereby placing the stair against the exterior glass fa?ade and flooding it with daylight and views.That created a new asset for the entire building– a wellness amenity that provides workers a healthy alternative to elevator transport.And,instead of a tenant having to build their own interconnecting stair if they happen to lease two or more floors,they can use the fire stair for the same purpose using secure card-key access.For a tenant,this significantly reduces costs and schedule impacts.

13 灵活的布局设计采用约10m×10m(33ft×33ft)的柱网,使租户可以灵活地安排布局和分隔空间以优化工作效率Flexible gridDesigning with a 33 ft×33 ft grid gives tenants flexibility in how they arrange their space and subdivide it to optimize their work

14 装配式设计装配式设计可将施工速度提高 30%,节省高达 10% 的总成本。通过工厂预制部件,需要运到工地的建材可以减少85%Kit of parts designThe kit of parts design can speed construction up to 30%,while generating overall cost savings of up to 10%.The prefabrication process allows for up to 85% fewer deliveries to the building site

对于采用重型木结构的建筑,找到理想的柱网尺寸十分重要。我们最终选取了约10m×10m(33ft×33ft)的柱网,这是一个不常见的柱网尺寸,但它是基于实验室工作台约3.35m(11ft)的模块确定的。我们的理由是,这样的正方形柱网可以为租户提供更大的灵活性,他们可以自己决定工作台按南北方向还是东西方向排列。

为了让这个柱网和重型木结构能够适应实验室的需要,我们还需要解决地板震动的问题。基于一个人在实验室空间中行走的脚步,结构工程师将结构系统的震动控制在6000MIPS(μin/s)以内。震动峰值出现在楼板的中心,也就是变形最大的地方,越靠近柱子的地方则防震性能逐步提高,震动最终降低到 2000 MIPS 以内。

实现这种防震水平的关键是“复合”:预制构件时将CLT(交叉层压木材)板与胶合木梁复合在一起,不仅能加快施工速度、降低成本,还能提高地板的硬度。如果6000MIPS 的防震性能对某些租户还不够,我们还可以通过多种方法升级结构系统,包括在实验室中增加隔墙和加强主次梁的强度。

该项目由于有8 层楼高而被归类为IV-B 型建筑,耐火时间需要达到2 小时。为达到该标准,木结构必须能够在发生火灾时提供一层炭化保护层。我们设计的炭化层可以使木材在外部燃烧时内部仍然具有所需的结构强度。

我们在设计中还融入了大量的室外空间作为办公场所的附加设施。Gensler 美国办公场所调查显示,室外空间在科研工作者最想要的办公场所设施中排名第一[5]。基于这样的反馈,我们在建筑的每一层都设计了阳台和室外平台,还在屋顶专门设计了室外空间。每层阳台都非常宽敞,进深在4.57m(15ft)以上,租户可以在这里进行会议、研讨,也可以在此休息。对于希望吸引新员工和保有老员工的租户而言,室外空间可以提供附加价值。

在设计研究中,我们还探索了科研建筑如何通过激活首层的公共活动而成为社区的催化剂。“下一代”实验楼与西雅图上城联盟集团、西雅图上城文化艺术联合会合作,希望打造一个容纳多元化的艺术与娱乐活动的场所,以支持这个地区内的诸多社区剧院公司。此外,为了推广西雅图多元化的烹饪艺术,我们为有抱负的少数族裔创业者设置了额外的空间作为餐厅,亦可以作为孵化器。

场地面积:2322.6m2

建筑占地面积:2302.1m2

总建筑面积:18417.1m2,共8 层

主要材料:柱、梁、楼板,主要采用重型木结构,部分采用钢结构(如东立面使用钢桁架),地板采用CLT(交叉层压木材)板和混凝土面层

Site Area:25,000 sf (approx.)

Building Footprint:24,780 sf

Floor Area:198,240 sf on 8 stories

Major materials:Primary structure is mass timber (wood columns,beams,floor structure).Supplemental steel structure,including steel rods at the east fa?ade.Concrete topping on CLT floor structure

科研建筑的能耗是普通办公楼的5~10 倍。在能耗如此高的情况下,建筑节能性能的微小改进也能节省大量的能源。西雅图温和的气候提供了自然通风的机会,可以通过将办公空间的部分玻璃幕墙设置为可调节的窗户来实现。

根据计算,“下一代”实验楼的办公空间一年中有34%的时间可以实现自然通风,这也满足了客户对于更多新鲜空气和室外空间的需求。自然通风设计加之对建筑围护结构的一些改善,使这座建筑的运行能耗比传统实验室建筑降低了30%。

除此之外,我们观察到市场上流行的空调系统正在从天然气系统转向全电热泵制冷系统。我们与机电设计单位Buro Happold 合作为整座建筑设计了全电系统。典型实验室建筑的 EUI(能源使用强度)通常在120~140 的范围内,而我们的第一步就是尽可能缩小这个数字。通过改用全电热泵制冷系统,我们发现与传统实验室建筑相比,这座建筑可以节省高达40%的EUI(能源使用强度)。

采用全电热泵制冷系统后,“下一代”实验楼产生的温室气体排放量将比传统实验室建筑少 50%。由于项目同时采用被动式策略和优化过的建筑围护结构与设备体系,可以节省相当多的能耗,再加上现场使用可再生能源与场外碳抵消的作用,这座建筑可以实现碳中和目标。

建筑设备的布置也遵循模块化的体系。“下一代”实验楼的顶层空间较为紧凑,是由于我们采用了独立新风系统,而不是集中式新风系统。对于这样一座建筑,我们甚至可以考虑使用再循环通风机,这种技术已经用于某些特定功能的建筑中。我们还优化了从非实验室空间到实验室空间的能量回收系统。

在某些情况下,平面布局的调整使实验室面积减少,我们可以相应地减少新风机的配置数。当然,一些楼层可能不需要配备新风机就可以为租户腾出更多使用空间。

15 当重型木结构遇到实验室防震要求项目采用截面约61cm×71cm(24in×28in)的木柱、截面约84cm× 84cm(33in× 33in)的双主梁和双T形深约53cm(21in)的次梁,楼板采用覆有约9cm(3.5in)厚混凝土面层的CLT(交叉层压木材)板,确保实现6000 MIPS(μin/s)的防震性能Mass timber meets lab vibration requirementThe required 6000 MIPS vibration can be accomplished with the mass timber system comprised of 24" ×28" timber columns,33" double girders,and double-T composite action with 21" deep beams,3-play CLT,and a 3.5" concrete topping

Determining the ideal structural grid was an important part of this exercise,given the commitment to using mass timber.We arrived at a 33-by-33-foot grid– an unorthodox dimension for the grid but one that is based on the 11-foot module of a lab bench.We reasoned that a square grid derived from the dimensions of a lab bench provides greater flexibility for tenants,who can determine whether the benches should be arranged in a north-south or east-west direction.

To make this particular grid– and mass timber– work for a lab,we needed to solve for the issue of floor vibration.Our structural engineers tuned the structural system for a 6000 MIPS (micro inches per second) performance,based on the footfall of someone walking through the lab space.The peak vibration occurs in the centre of the bay,where it is most flexible,and the performance improves as one works toward the columns,ultimately exceeding 2000 MIPS.

The key to achieving this level of vibration control was composite action.We prefabricated the CLT (cross-laminated timber) panels with the glulam beams,a strategy that not only speeds up construction and reduces costs but also makes the floor stiffer.And if the 6000 MIPS is not enough for a specific tenant,there are several ways to upgrade the system,including the addition of partition walls in the labs or further strengthening the beams or girders.

Due to the height of the 8-storey building,it is classified as Type IV-B construction,which requires a two-hour fire rating.To meet that standard,the structural timber must be designed to provide a char layer of protection in the event of fire.We designed the char layer so that the timber can burn on the outside and still have the needed structural capacity remaining inside the char layer.

Our design also incorporates a substantial amount of outdoor space as a workplace amenity.According to the Gensler U.S.Workplace Survey,science workers ranked outdoor space as their #1 most desired workplace amenity[5].To be responsive to that data,we incorporated balconies and terraces on every level of the building and provided additional rooftop outdoor space.The balconies are generous in size– at least 15 feet deep– which allows tenants to have outdoor meetings,conferences,and lounge spaces.It provides added value for tenants hoping to attract and retain staff.

In our design studies,we also explored how a science building could be a community catalyst by creating opportunities to activate public programmes at the ground level.In partnership with the Uptown Alliance Group and the Uptown Arts and Cultural Coalition,NEXT was designed to house a multipurpose arts and entertainment venue to support the district"s high concentration of community-based theatre companies.To promote the city"s diverse culinary arts,additional space is dedicated to restaurant incubator venues for aspiring minority entrepreneurs.

Science buildings consume between 5~10 times the energy of a normal office building.Given this high rate of energy use,even incremental improvements in performance can yield substantial savings.Seattle"s moderate climate afforded us the opportunity to plan for the use of natural ventilation of the workplace by specifying operable windows for the workplace component of the floor plate.

According to our calculations,the NEXT workplace could be naturally ventilated 34% of the year,which also satisfies clients who want greater access to fresh air and outdoor space.Designing for natural ventilation,in addition to other adjustment to the building envelope,allowed us to reduce the operating energy requirements for this building by 30% over a conventional lab building.

Beyond that,we are seeing a switch in the market from natural gas systems to all electric heat pump chiller systems.We worked with our MEP engineering partner,Buro Happold,to electrify the entire building.On these types of lab buildings,a standard EUI would be in the 120~140 range,and one of our first steps was to reduce that as much as possible.By switching to all-electric systems,we found we could have an EUI savings up to 40% when compared to a conventional lab building.

如何通过灵活的平面布局来优化工作效率也是我们衡量建筑影响的研究的一部分。建筑与空间可以激活人与人之间的联系[6],鼓励人们建立信任、相互合作,形成良好的工作文化,激发更多创意产生。

为了创造一个新的多元化的科研工作场所,促进人们的互动与合作,我们基于鼓励聚集的原则进行了一系列平面布局的测试。我们希望给科研空间赋予一些新的元素,例如科技办公场所的协作性、酒店空间的体验性和品牌设计的文化凝聚力。

设计平面布局的一个关键问题是如何为租户提供最大的灵活性。我们使用了柱网体系,把核心筒放置在建筑的边缘,让租户能根据自身的工作文化来最大限度地自由设计布局。

在第一种平面布局方案中,我们按1:1 的比例设置实验室空间与普通办公空间,这是目前生命科学建筑的常用比例。考虑到未来的情况,我们还研究了如何在减少实验室面积的同时提供一个灵活可变的办公环境,让人们可以选择在不同的地方办公。此外,我们设计的室外空间与外部楼梯也可以作为公共使用的协同空间。

在我们看来,通过尽可能减少实验室面积来降低碳排放与能耗是生命科学建筑未来的发展方向。这一目标的实现,离不开计算机建模与机器学习的发展、实验设备尺寸的缩小、生物实验样本尺寸的减小和实验室自动化等一系列因素的支持。我们还设计了另一种非传统的平面布局,这一方案考虑了上述因素,同时将一部分需要100%排气实验室隔离开,最终实验室所占面积比例可以低于50%。在这种情形下,其余的非封闭实验室将成为生物安全第一等级(BSL-1,即防护水平最低等级)的实验室。

在现实情况下,这种平面布局方案是非常激进的,需要我们与租户密切合作确定这种布局是否符合他们的需求。然而,考虑到实验室面积占比不断缩小是当下的发展趋势,租户都有重要的可持续发展目标,而且科学事业的进步需要协同合作,我们相信这个非传统的平面布局是一种面向未来的方案。

“下一代”实验楼最终将成为一个激发租户和开发商关于科研建筑的新想象的平台。我们呼吁大家共同努力,让实验室建筑从传统走向更具韧性、可持续发展性和包容性的未来,一起建立一种空间利用高效的、可持续的、社区融合的科研建筑新范式,这也将获得来自实验室租户和开发商的支持。□

17 “下一代”实验楼温室气体排放量比传统实验楼少50%以我们在西雅图的研究为例,采用全电热泵制冷系统替代传统的天然气系统,“下一代”实验楼的温室气体排放量将比传统实验楼少50%NEXT produces 50% less greenhouse gas emissions than a conventional lab building Using our Seattle case study,by going with all-electric systems as an alternative to natural gas,NEXT produces 50% less greenhouse gases than a conventional lab building

18 “下一代”实验楼在34%的工作时间可以享受自然通风NEXT allows the workplace to be naturally ventilated 34% of occupied hours

19 实验室平面布局方案示例通过把核心筒放置到建筑的边缘,我们创造出更多的积极空间,让员工可以选择不同的办公地点和办公方式Test fit plan for today"s lab Moving the core to the perimeter allows for more of the floor space to be activated and provides workers more choice in where and how to work

Further,by going all-electric,we found that NEXT would produce 50% less greenhouse gas emissions than a conventional lab building.Introducing passive strategies and optimising the building envelope,in combination with optimising the building systems,makes significant enough gains that,with the addition of both renewable energy onsite and carbon offsets offsite,the building can achieve carbon neutrality.

In terms of building systems,we adopted a modular building approach.The penthouse of the NEXT lab is more compact than one might expect because we specified on-floor air handling systems instead of a centralised system.For a building like this,we could even consider using recirculating fume hoods,which are becoming acceptable in some programme applications.We also optimised energy recovery and the cascading of air from non-lab space to lab space.

In some circumstances,if the layout calls for a reduced footprint for labs,it would be feasible to reduce the number of these on-floor air handlers.Conceivably some floors might not require these dedicated outside air source units,and that would result in more leasable tenant space.

As part of our study"s measurable impacts,we looked at ways to optimise organisational performance by capitalising on the flexible floor plate.Buildings and spaces are now about elevating connectivity with people[6].That connectivity builds trust,which encourages collaboration and elevates culture– all leading to more idea generation.

To create a new hybrid sciences workplace that empowers people to connect and collaborate,we conducted a series of test fits based on our philosophical bias towards the benefits of aggregation.This approach is about blending science with influences that have not been merged before– such as the collaborative elements of tech workplaces,the experiential attributes of hospitality spaces,and the culture-building power of brand design.

One of the key issues in designing the floor layouts was providing maximum flexibility for the tenants.By laying out the grid in a 33-by-33-foot module and locating the core at the perimeter,it allows tenants the ultimate flexibility to design for their organisation"s mission and culture.

Our first test fit plan looked at a conventional 50-50 split between lab space and workspace,a common ratio in today"s life sciences buildings.With an eye to the future,we also looked at how we could design the space to reduce the size of the lab component but also create a flexible,agile workplace environment that allows people a sense of choice in where they work,as well as provide outdoor amenity spaces and the exterior stairwell that can serve as a communal,collaborative space.

To our minds,this is future of life sciences buildings– where we reduce carbon emissions and energy usage by cutting back on the square footage of lab space.That goal is being supported by the rise of computational modelling and machine learning,reduction in equipment size,reduction in sample sizes for experiments,and new automated processes.Accounting for those factors in combination with isolating the lab functions that require 100% exhaust,we studied a non-traditional option in which the lab occupies significantly less than 50% of the floor area.In that scenario,the rest of the non-enclosed lab space becomes a low-risk BSL-1 space.

In practice,this would be a highly progressive approach requiring us to work closely with our science tenants to validate whether it is appropriate for them.However,given that the winds of change will surely impact the shrinking of labs– coupled with the importance of our tenants" sustainable goals and the need for synergistic collaboration to advance scientific endeavours– this posits a future-forward approach.

Ultimately,NEXT is a platform that allows tenants and developers to reimagine what a science building can be.It is our call to action to shift from the past to a more resilient,sustainable,and inclusive future for lab buildings– a new model of efficient space usage,sustainability,and community connectivity that will be attractive to science building tenants and,by extension,the developer community.□

猜你喜欢实验楼租户木结构实验楼电气设计的特点研究建筑与装饰(2023年5期)2023-04-05古建筑木结构保护技术在现代园林工程中的应用探讨建材发展导向(2022年20期)2022-11-03海尔布隆实验楼世界建筑导报(2020年3期)2020-07-15基于多租户隔离的云安全建设电子技术与软件工程(2020年12期)2020-02-04萨格勒布木结构观景塔现代装饰(2019年11期)2019-12-20“Linux操作系统”课程智慧课堂构建研究无线互联科技(2018年14期)2018-09-26某高校制药实验楼废气处理改造工艺应用科学与财富(2018年19期)2018-08-20基于MVC模式的多租户portlet应用研究*计算机与数字工程(2016年11期)2016-12-13藏式古建筑木结构损伤识别的数值模拟振动、测试与诊断(2014年1期)2014-03-01企业多租户云存储平台的设计与实现西安工程大学学报(2014年2期)2014-02-28

推荐访问:木结构 科研 探索

版权声明:

1、本网站发布的作文《探索下一代重型木结构科研建筑》为爱作文网注册网友原创或整理,版权归原作者所有,转载请注明出处!

2、本网站作文/文章《探索下一代重型木结构科研建筑》仅代表作者本人的观点,与本网站立场无关,作者文责自负。

3、本网站一直无私为全国中小学生提供大量优秀作文范文,免费帮同学们审核作文,评改作文。对于不当转载或引用本网内容而引起的民事纷争、行政处理或其他损失,本网不承担责任。

热门专题